Централната симетрия в геометрията - представяне 26230
Централната симетрия
А и А 'се казва, че е симетричен по отношение на точка О, ако е О средата на АА. О В точка се счита за симетричен за себе си.
равнина на реализация, където всяка точка е свързан А симетричен да по отношение на точка O до точка А ", се нарича централната симетрия. Точка О в този случай се нарича център на симетрия.
Две фигури F и F 'се наричат централно симетрични
Две фигури F и F 'се наричат централно симетрични за център О, ако всяка точка на една цифра съответства с друга точка за симетрични форми. Фигура F е централно симетрично около центъра О, ако е симетричен на себе си.
Property 1. Централното симетрията запазва разстояния между точки.
Имоти 2. централната симетрия превежда сегменти сегменти, лъчи и лъчи в прави линии.
Имоти 3. Централното симетрията се превежда директно, без да преминават през центъра на симетрия, успоредно с линията си.
Какво точки се нарича симетрична по отношение на точката
Какво точки се нарича симетрична по отношение на точката?
Отговор: точки А и В "се казва, че симетрични по отношение на точка O, ако О е средата на АА". О В точка се счита за симетричен за себе си.
Какво се нарича централна симетрия
Какво се нарича централна симетрия?
A: централно симетричната равнина е трансформация, в която всяка точка е свързан А симетричен да по отношение на точка O до точка А ".
Какво цифри се нарича централно симетрична
Какво цифри се нарича централно симетрична?
Отговор: F две цифри и F "се наричат централно симетрично около центъра О, ако всяка точка на една цифра съответства с друга точка за симетрични форми.
Фигура F е централно симетрична
Коя цифра се нарича централно симетрична?
Отговор: фигура F е централно симетрично около центъра O, ако тя е симетрична на себе си.
Посочете на симетрия свойства на централната
Посочете собственост на централна симетрия.
Отговор: 1. централна симетрия запазва разстояния между точки. 2. централната симетрия превежда сегменти в сегменти, лъчи и лъчи в прави линии. 3. Централното симетрията се превежда директно, без да преминават през центъра на симетрия, успоредно с линията си.
Кое точно в центъра на симетрия минава
Какъв е смисълът в центъра на симетрия се трансформира в себе си?
Отговор: В центъра на симетрия.
Директно с централна симетрия в себе си
Забранена е всяка пряка в централната симетрия в себе си?
Отговор: Най-линията, минаваща през центъра на симетрия.
Има ли дължината на центъра на симетрия
Има ли дължината на център на симетрия?
Централна симетрия е на точка А до точка А '
Централна симетрия е на точка А до точка А ". Къде е центърът на симетрия?
Отговор: В средата на ОО сегмент ".
Дали оста на лъча на симетрия
Дали оста на лъча на симетрия?
Той е център на симетрия има двойка пресичащи се линии
Той е център на симетрия има двойка пресичащи се линии?
Дали равностранен триъгълник е център на симетрия
Дали равностранен триъгълник е център на симетрия?
Това става успоредник симетрия център
Дали успоредник център на симетрия?
Четиристранни има център на симетрия
Вярно ли е, че ако един четириъгълник има център на симетрия, той е успоредник?
Коя от фигурите, показани на фигурата, има център на симетрия
Коя от фигурите, показани на фигурата, има център на симетрия?
Писма на латинската азбука, с център на симетрия
Фигурата въведете буквите от латинската азбука, с центъра на симетрия.
Отговор: Н, I, N, О, S, X, Z.
Дали всеки правилен многоъгълник има център на симетрия
Дали всеки правилен многоъгълник има център на симетрия?
Мога да разбера има повече от един център на симетрия
Може ли да разбера, за да имате повече от един център на симетрия?
Отговор: Да, например, линията има безкраен брой центрове на симетрия.
Може ли да разбера симетрия център не принадлежи на нея
Може ли да разбера симетрия център не принадлежи към нея?
Отговор: Да, например, в центъра на кръга е нейния център на симетрия.
Фигурата има безкрайно много симетрия центрове
По кое място три направо фигура, образувана от тях има безкраен брой центрове на симетрия?
Отговор: Двете линии са успоредни, а третият е от него на равни разстояния.
Равен точка А ', симетрична точка А, в сравнение с буква О
Равен точка А ', симетрична точка А, по отношение на точка О.